AdSEE: Investigating the Impact of Image Style Editing on Advertisement Attractiveness

Liyao Jiang¹, Chenglin Li¹, Haolan Chen², Xiaodong Gao², Xinwang Zhong², Yang Qiu², Shani Ye², Di Niu¹.

¹ ECE, University of Alberta ² PCG, Tencent

Motivations and Goals

- Online advertisements
 - Important elements in e-commerce sites, social media platforms, search engines, etc.
- Mobile browsing becomes more and more popular
 - Use both visual and textual information to grab the attention of users
 - Often in the form of text and cover image
- Previous findings
 - Appealing cover images lead to higher click through rate (CTR) [4, 9]
 - Human faces in ads correlate to more user attention [2,20,44]
 - Advertisement Creative Selection [8]: compose an ad design from creative elements
 - Image editing is made possible by high-quality generative models, e.g. StyleGAN [30-32]
- Questions we investigate
 - Is there a linkage between advertisement popularity and image style editing?
 - Can facial style editing (e.g. adjusting smile, hair, eye gaze direction, etc.) affect the popularity of online ads?

.Ⅲ中国联通 夺	下午	3:48 @ 🗸	🍯 🖇 15% 🚺 🛃
推荐			
骑士有点为	可难	11 Section 2	
1			
	202		2 CEVS

韩际新世界免税店,韩国免税购优惠之选

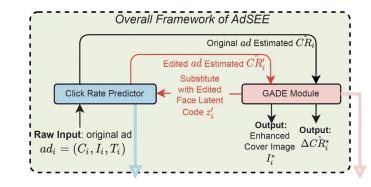
Our Contributions

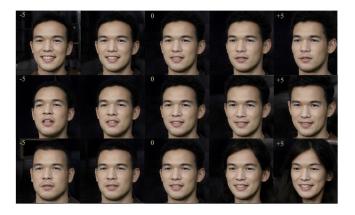
Advertisement Style Editing and Attractiveness Enhancement (AdSEE) framework

- Click Rate Predictor (CRP)
 - First CTR predictor that considers GAN-based **facial latent** features
 - Along with other features: image embedding, text embedding, ad category
- Genetic Advertisement Editor (GADE)
 - Apply StyleGAN-based latent Facial Style Editing
 - Use SeFA [50] method to find semantic editing direction (e.g. smile, eye gaze direction, etc.) in the StyleGAN latent embedding space
 - Use Genetic Algorithm to find optimal (i.e. that lead to the highest projected click rate) editing intensities for a given cover image, guided by the Click Rate Predictor

Data science approach:

- Collected real ads dataset (QQ-AD) from the QQ Browser mobile app
- Extensive Offline Experiments:
 - Analysis of how semantic directions may impact click rates (e.g. smiling face, feminine features, downward facing may be more popular features)
 - Compared CRP with a range of baselines
- **Online A/B test:** verified the existence of the relationship between image style editing and ad popularity





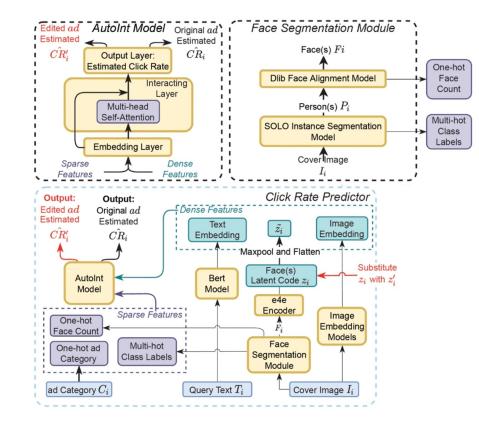
AdSEE Framework - Click Rate Predictor (CRP)

Face Segmentation Module

- SOLO instance segmentation model [57, 58] is used to extract persons from entire image, also extracts the class labels as CRP feature (i.e. labels of objects in the image)
- Face Alignment algorithm **extracts faces** from person images, and uses number of faces as CRP feature
- The e4e [52] encoder (an inversion encoder pre-trained on FFHQ facial images) inverts the face image *F* into face latent code *z*

Click Rate Predictor (CRP)

- First CTR predictor that takes **facial latents** from StyleGAN2-FFHQ as a feature
- Along with other features: **image** embedding, **text** embedding, ad **category** features
 - Image Embedding: ad cover image converted to embedding
 - Text Embedding: the ad text description is mapped to text embedding through pre-trained Bert-Chinese model
 - Sparse features: face count, ad category, class labels
- The base recommender model AutoInt is selected through empirical evaluation of a series of SOTA models
 - Takes all 6 features, maps to embeddings and learns both high-order and low-order feature interaction
 - Predicts the CR of ads based on input features



AdSEE Framework - Genetic Advertisement Editor (GADE)

Recent advances in image generation and editing:

- StyleGAN [30-32]: high-quality image generation model
- SeFa [50] identifies a set of q **latent edit directions** *n*, by eigen-decomposition of generator weights, $n = \{n_p\}_{p=1}^{q}$
- Style Editing: perturb the latent embedding *z* of image along the latent directions *n* to edit the style/semantic of images (e.g. age, eye gaze direction), $z'_i = z_i + \alpha_i n$

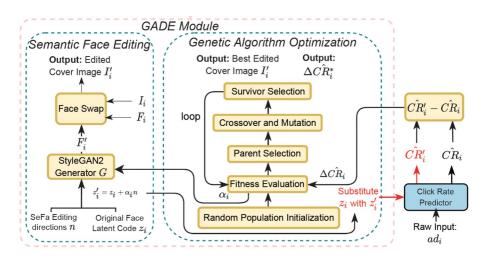
Genetic Advertisement Editor (GADE)

- Different **editing intensity coefficients** *a* leads to different editing result, thus different predicted CR
- Find the optimal facial editing coefficients *a** (i.e. the edit with the highest projected increase in CR) with **genetic algorithm** guided by **Click Rate Predictor feedback**
- Use StyleGAN2 generator *G* to generate the edited face *F*' from the edited latent code *z*'

$$F'_{i,j} = edit(F_{i,j}) = G(z'_{i,j}) = G(z_{i,j} + \alpha_{i,j}n)$$

 Face Swap algorithm with OpenCV and Dillo function to replace the original face F with edited face F'

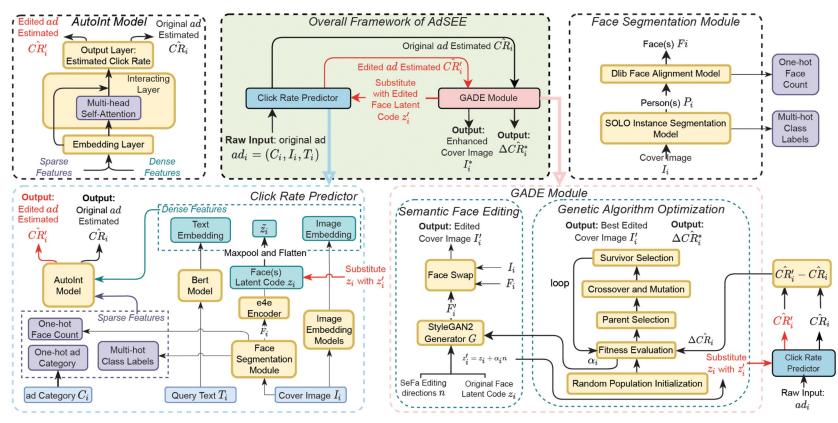
$$I_i' = Swap(F_i, F_i', I_i)$$



AdSEE Framework - Overview

Advertisement Style Editing and Attractiveness Enhancement

- Given an original ad cover image, find the optimal editing "plan" that leads to the highest projected click rate
- CRP predicts CR based on face latents, text embedding, image embedding and other sparse features
- GADE uses Genetic Algorithm to optimize the editing coefficients, with guidance from CRP



Evaluation - Datasets

Datasets

- Note: the common recommender model datasets such as Avazu and Criteo do not apply, since they are not based on any images
- **QQ-AD dataset:** we collected **real advertising data** from QQ Browser mobile app.
 - Collect the numbers of clicks, impressions, and click rate
 - Remove ads with no faces or more than 5 faces, and avoid lowresolution and unrecognizable face images
 - Around 12.92% contain a valid number of faces
 - These images account for 19.12% of total impressions and 19.48% of the total clicks.
 - (Suggests facial images are common in the QQ Browser environment and editing facial features can potentially have large impacts on users' clicks)
 - Not published to protect copyright and privacy

• CreativeRanking Dataset [55]

- To further evaluate our methods on a **publicly available dataset**
- Images are from the e-commerce setting, each sample contains product name, click rate, and ad image
- Also shows **transferability to the e-commerce domain** besides from mobile/online advertisements

Table 1: Statistics of the Collected QQ-AD Dataset.

Dataset	#Ads	#Impressions	#Clicks	CR
QQ-AD	158,829	4,263,667,016	429,830,278	0.1008
Applicable	20,527	815,272,384	83,729,560	0.1027
Ratio	12.92%	19.12%	19.48%	-

Evaluation - Offline Evaluation of CRP

Table 2: Comparing the proposed CRP predictor with other baselines using different types of features on the QQ-AD dataset.

Model	Feature Type	MAE↓	MAPE \downarrow	NDCG@10↑	NDCG@50↑	Spearman's rho ↑	Kendall's tau ↑
CRP-NIMA	Image Quality	0.0299	0.7456	0.2764	0.3917	0.3634	0.2480
CRP-OpenImage	Image Embedding	0.0295	0.7258	0.5950	0.5551	0.3941	0.2696
CRP-Sogou	Image Embedding	0.0299	0.7429	0.5095	0.5175	0.3613	0.2464
CRP-e4e	Face Latent Code	0.0306	0.7663	0.5149	0.5204	0.2954	0.2003
CRP	Combined	0.0262	0.6542	0.6854	0.7337	0.5122	0.3609

Table 3: Comparing the proposed feature combination C5 with other combinations on the CreativeRanking [55] dataset. We consider features including Face Count (FC), Product Name (PN), Class Label (CL), Face Latents (FL), and Image Embedding (IE).

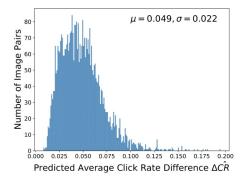
#	Sparse Features	Dense Features	MAE↓	MAPE↓	NDCG@10↑	NDCG@50↑	Spearman's rho ↑	Kendall's tau ↑
C1	FC, CL	FL, IE	0.0134	0.5988	0.4567	0.4977	0.3374	0.2299
C2	PN, CL	FL, IE	0.0132	0.6300	0.4975	0.4935	0.3304	0.2255
C3	FC, PN, CL	FL	0.0136	0.6479	0.3888	0.4073	0.2978	0.2020
C4	FC, PN, CL	IE	0.0135	0.5939	0.4865	0.4674	0.3379	0.2298
C5	FC, PN, CL	FL, IE	0.0132	0.5947	0.5065	0.5256	0.3609	0.2468

Evaluate CRP on click rate prediction task

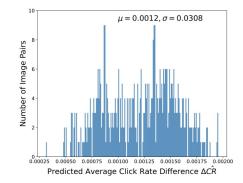
- CRP Trained on QQ-AD or CreativeRanking training set
- Shows the benefit of the **proposed combined set of multi-modal features** (outperformed other feature types, e.g. Image Quality score, image embedding, etc.)
 - Dense Features: Face Latents, Text Embedding, Image Embedding
 - Sparse Features: ad category, class labels, face count

Evaluate **GADE** offline on editing the test set

- Apply GADE on the test sets, use the CRP to evaluate both the original and edited ad (i.e. find the estimated click rate increase)
- The distribution for *ΔCR* is positive on both datasets, showing the GADE was able to find edits that can increase the projected click rates
- Right-skewed on QQ-AD, since most ads are already well-designed, a small increase in CR is expected for most ads



(a) Distribution of $\Delta \hat{CR}$ in the offline test on the QQ-AD dataset.

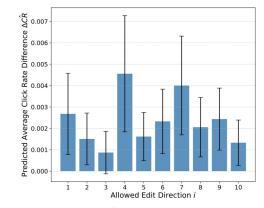


(c) Distribution of $\Delta \hat{CR}$ in the offline test on the Creative R-anking [55] dataset.

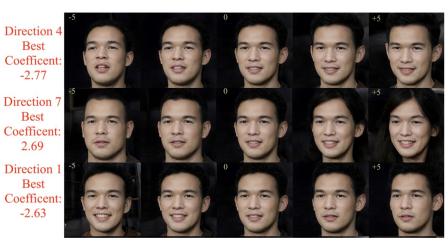
Evaluation - Offline Evaluation of GADE

Analysis of Semantic Editing Directions

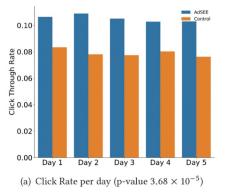
- Which editing directions are correlated with most increase in projected CR?
 - We sample 1000 images, and edit them with the top-10 semantic directions from SeFa factorization
 - Each time only edit on 1 of the 10 direction
- Observations
 - The average predicted ΔCR is highest for directions n_4 , n_7 , n_1
 - i.e these directions have the highest impact on CR among the editing directions
- Visualization
 - We visualize each edit direction with a range of coefficients from -5 to 5
 - We take the average of best coefficients found by AdSEE for the 1000 images
 - Direction 4: **vertical orientation** of the face, -2.77 mean a face slightly facing downwards is more attractive
 - Direction 7: **gender** of the face, 2.26 means a face with more feminine features is more attractive
 - Direction 1: **smilingness** of the face, -2.63 means a smiling face is more attractive

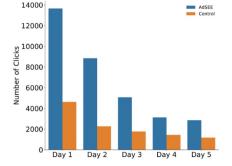


(b) Distribution of $\Delta \hat{CR}$ for 10 different edit directions in the offline test on the QQ-AD dataset.

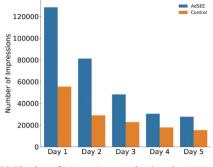


Impact of Image Style Editing on Advertisement Attractiveness

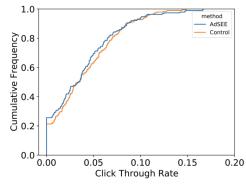




(b) Number of clicks per day (p-value 1.86×10^{-2})



(c) Number of impressions per day (p-value 2.11 \times $10^{-2})$



(a) CDF of the click rate

Online A/B test (5 Days over the QQ Browser mobile app):

- AdSEE group: AdSEE edited ads (250 ads)
- Control group: corresponding original ads (250 ads)

AdSEE edited group:

- Higher Click Rate
 - A significant increase in attractiveness to users
- Higher Number of Impressions
 - Production recommender system believes that AdSEE-edited ads are more relevant to users
 - \circ \hfill i.e., more likely to receive clicks, thus pushed to users more often
- Demonstrated the existence of the correlation between facial style editing and click rate in online ads

Conclusion and Discussion

Conclusion

- We verified the existence of the correlation between facial style editing and click rates in online ads
- Designed a Click Rate Predictor that takes multi-modal (i.e. text and image) features including facial latent embeddings from a StyleGAN2 model
- The GADE module can efficiently search for optimal editing directions with the genetic algorithm and feedback from CRP
- Insights on the attractive semantic editing direction to the users, e.g. facing downward, smile, feminine features

Interesting Directions for Future Research

- Study the effect of other types of editings other than faces
- Image editing using the capabilities of Stable Diffusion models

Ethics Considerations

- Whether there is a linkage between image style editing and ad popularity is an important question for the AI ethics community
- Any exploitation of the research results is subject to further considerations of regulations and ethical requirements
- We hold data privacy, copyright protection, information objectivity, user consent and right-to-correct as our core ethical values throughout the experiments

Figure 7: Examples of *ads* enhanced by AdSEE where we show the *ad* category, text, and cover image. Left: Original cover image, Right: Enhanced cover image.

Thank you!

Liyao Jiang

PhD Student University of Alberta Email: liyao1@ualberta.ca

Resources:

- Code/Slides/Poster: https://github.com/LiyaoJiang1998/adsee
- Paper: <u>https://doi.org/10.1145/3580305.3599770</u>